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ABSTRACT
Human-robot collaboration systems benefit from recognizing peo-
ple’s intentions. This capability is especially useful for collaborative
manipulation applications, in which users operate robot arms to
manipulate objects. For collaborative manipulation, systems can
determine users’ intentions by tracking eye gaze and identifying
gaze fixations on particular objects in the scene (i.e., semantic gaze
labeling). Translating 2D fixation locations (from eye trackers) into
3D fixation locations (in the real world) is a technical challenge.
One approach is to assign each fixation to the object closest to it.
However, calibration drift, head motion, and the extra dimension
required for real-world interactions make this position matching
approach inaccurate. In this work, we introduce velocity features
that compare the relative motion between subsequent gaze fixa-
tions and a finite set of known points and assign fixation position to
one of those known points. We validate our approach on synthetic
data to demonstrate that classifying using velocity features is more
robust than a position matching approach. In addition, we show
that a classifier using velocity features improves semantic label-
ing on a real-world dataset of human-robot assistive manipulation
interactions.
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1 INTRODUCTION
Human-robot collaboration systems benefit from recognizing peo-
ple’s intentions, which can often be assessed through eye gaze. A
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Figure 1: Schematic representing the semantic gaze labeling
problem.Given a gaze point of regard and the location of sev-
eral (possiblymoving) objects in the scene, determinewhich
object the participant is looking at. This problem is made
more difficult by the errors induced by the motion of scene
objects and 3D gaze calibration.

particularly promising application for human-robot collaboration
comes from the realm of assistive robotic manipulation. In this
domain, a user controls a robot arm through an operating interface
to perform a task. This scenario applies to various tasks, from fac-
tory operations to space robotics to disaster recovery, but among
the most exciting is when using assistive devices. Robot arms that
mount onto wheelchairs are already commercially available and in
use, but these devices tend to be difficult to use especially for com-
plex tasks [Herlant et al. 2016]. To improve these systems, roboti-
cists build systems to understand the user’s intentions and add
automation to the robot to help them accomplish their task [Aron-
son et al. 2018; Orlov et al. 2018]. And since eye gaze is such a useful
signal for understanding user intent, exploring its utility in this
application is particularly valuable.

In this paper we focus specifically on the problem of semantic
gaze labeling: given a scene and a gaze position within the scene,
what object is the user looking at? In this formulation, we assume
that the user is looking at one of a finite set of (possibly moving)
objects or locations, here termed keypoints. This problem is particu-
larly resonant within the manipulation task domain, as (1) there are
relatively few task-relevant objects in the scene, and their positions
may already be known due to the system requirements for the rest
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of the system and (2) people's gaze is particularly task-relevant
during manipulation [Brouwer and Knill 2007; Hayhoe et al. 2003;
Johansson et al. 2001; Land and Hayhoe 2001], especially robotic
manipulation [Aronson et al. 2018]. Semantic gaze labeling is one
useful preprocessing step for understanding what people are in-
tending to do; it yields information such as look-ahead �xations
indicating planning [Aronson et al. 2018; Mennie et al. 2007] and
can provide a signal for noting unexpected or problematic events
that occur [Aronson and Admoni 2018].

However, solving this semantic gaze labeling problem within
real-world domains such as robotic manipulation can present signif-
icant challenges. The interaction occurs in a complex, 3D environ-
ment, which presents a much wider error space. While signi�cant
work has been done to investigate this problem in a real-world set-
ting [Atienza and Zelinsky 2005; Pfei�er 2012; Pfei�er and Renner
2014], introducing a third dimension inherently raises the thresh-
old for accuracy. When people are allowed to move their heads
freely, including the e�ect of head position relative to scene position
can also induce inaccuracy. Though highly calibrated systems can
compensate for these e�ects, it is nevertheless valuable to explore
algorithmic solutions to ease the accuracy burden of gaze collection
systems.

In this work, we present features derived from the relative mo-
tion between subsequent �xations, termedvelocity features. These
features reduce the impact of slow-changing o�sets (e.g. calibration
drift or tracker motion), since they consider only relative motion.
We evaluate the usefulness of these velocity features on both syn-
thetic data and real data. On synthetic data, which is generated by
randomly generating keypoint and �xation patterns and manually
adding increasing o�set magnitudes, using velocity features in-
creases classi�cation accuracy when o�set size exceeds a signi�cant
fraction of the average inter-keypoint distance. We also evaluate
these features on data collected from a collaborative manipulation
task using a robot. On this task, using the velocity features improves
overall semantic classi�cation accuracy from65:9%to 75:8%, with
most improvement coming from data with higher o�sets.

This paper begins by summarizing related work in Sec. 2 and
de�ning the semantic gaze labeling problem in Sec. 3. Then, it
describes how to calculate and use velocity features in Sec. 4. We
demonstrate the usefulness of these features in both synthetic data
(Sec. 5) and on a real dataset collected from interactions with a
robot (Sec. 6). Finally, we discuss limitations of this approach and
future work.

2 RELATED WORK
Using eye gaze to understand people's mental states has taken many
forms depending on the task. For understanding behavior such
as reading [Just and Carpenter 1980] or driving [Braunagel et al.
2015], bottom-up analysis based on raw gaze features has proven
useful. However, for particular tasks, labeling which of a small
set of objects someone is looking at can provide valuable analysis.
One particular task that this is relevant for is object manipulation:
the relationship between people's intentions and their gaze in this
domain is well categorized, with look-ahead �xations indicating
planned object placement [Hayhoe and Ballard 2005; Hayhoe et al.
2003; Land et al. 1999; Land and Hayhoe 2001] in tasks such as block

movement [Johansson et al. 2001] or food preparation [Land and
Hayhoe 2001]. This phenomenon extends to manipulation using
a robot rather than by hand: people illustrate similar patterns of
planning glances but also occasionally �xate on the manipulator
arm [Aronson et al. 2018]. Explicitly identifying the objects being
examined is useful for such applications as manipulation planning
and assistance [Li et al. 2017] or failure recovery [Aronson and
Admoni 2018].

Several systems have been proposed for solving the semantic
labeling problem [Hagihara et al. 2018; Li et al. 2017; Paletta et al.
2013a; Singh et al. 2018]. One recent representative example is
EyeSee3D [Pfei�er and Renner 2014] (and its follow-up EyeSee3D
2.0 [Pfei�er et al. 2016]). In this approach, head pose is recovered
from �ducial tags placed in the workspace, and this pose informa-
tion is used to perform ray tracing to intersect the line of sight with
given object meshes. Compared to manual labeling, this system per-
formed with 64% accuracy, indicating the di�culty of this problem.
Other approaches use alternate methods for head pose recovery
or environment modeling, but are fundamentally similar in their
approach to the semantic gaze labeling problem.

More sophisticated approaches for labeling have also been ex-
plored. Pfei�er [2012] discusses expanding a single gaze ray to an
attention volume, a Gaussian centered around the point of regard.
Mantiuk et al. [2013] discuss a strategy for incorporating both key-
point positions and velocities at each timestep into the labeling
process. Vidal et al. [2013] uses correlations between screen-based
targets moving in di�erent patterns and eye motion to identify
which of the targets is inducing smooth pursuit behavior. Bernhard
et al. [2014] presents a probabilistic approach to semantic gaze la-
beling, in which agaze-to-object mapping(GTOM), or a probability
distribution over a �nite set of keypoints, is generated by combin-
ing di�erent position or velocity features with Bayesian fusion;
this work also presents several possibilities for generating prob-
abilities from local position or velocity values. Our contribution
supplements these works by presenting bulk features that work on
the time scale of �xations rather than single timesteps.

3 SEMANTIC GAZE LABELING
There are a variety of ways to use eye gaze to recover di�erent parts
of someone's mental state, and each task domain can have di�erent
approaches. For tasks such as manipulation, in general there are
only a relatively small number of objects that are relevant, and
these objects can be enumerated in advance. Understanding when
people look at which objects in a scene can be a revealing signal for
what they are intending to do (via look-ahead �xations [Mennie
et al. 2007]) or if an error has occurred [Aronson and Admoni 2018].

In order to use gaze in this way, we must be able to robustly
identify a gaze or �xation location with a particular object. We can
de�ne this semantic gaze labelingproblem as follows: Within an
egocentric video, let the eye gaze position over time� be denoted
¹x� ;y� º = �x� . Choose a �nite numbern of keypoints¹ki

x;� ;ki
y;� º =

ki
� for i = 1� � � n that track the locations of speci�c objects in the

scene. (These object positions can be determined from projecting
the 3D scene positions into the camera position, through video
object tracking, or any other method). The semantic gaze labeling
problem consists of assigning to each time a label` � , an index1� � � n
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into the keypoints representing the object being �xated at that time.
To reduce the data complexity required, we can preprocess the gaze
signal by dividing the gaze into individual �xations with mean
locationsft , where we assume that each �xation shares a label,
and discarding the saccadic transitions between �xations. (A single
�xation index t spans a range of times»� t ;0; � t ;1¼.) Then, the labeling
problem becomes assigning a label` t to each �xation locationft .

4 APPROACH
The most straightforward approach for semantic labeling is to as-
sign to each �xation the closest object in the scene. In this paper, we
call thisposition matching. If the point of regard is captured accu-
rately, and the relevant scene object positions are known precisely,
the semantic labeler can simply label each �xation with the closest
object (using some appropriate metric, e.g. cosine distance between
the rays from the head position). This or similar approaches have
been used successfully for highly accurate data [Hagihara et al.
2018; Li et al. 2017; Paletta et al. 2013a; Pfei�er and Renner 2014;
Pfei�er et al. 2016; Singh et al. 2018].

However, this approach performs poorly in the presence of er-
rors. Inaccuracy during initial calibration can cause static errors
in the scene, where the true gaze location is somewhat o� from
a computed point of regard. Moreover, and particularly when us-
ing mobile eye trackers, gradual motion of the sensor components
can cause the calibration to drift over time. This problem is ex-
acerbated when reconstructing full 3D scenes, as the increased
number of parameters and sensors needed for unrestricted gaze di-
rection reconstruction all increase the sensitivity of the calibration
to inaccuracy or drift.

To mitigate this problem, we borrow techniques from signal
processing. First, we note that these calibration drifts are usually
slow with respect to actual eye motion. Eye tracker calibration
error is constant; eye tracker slip is often slow; and object motion is
generally slow relative to eye motion. Therefore, we can expect that
relative to the time scale of individual gaze �xations, the calibration
error will stay generally constant. Furthermore, we assume that we
know the locations of all of the relevant objects in the scene (the
keypoints). Therefore, to the standardposition featuresthat encode
the distance from the gaze �xation to each keypoint, we add in
velocity features. These features compare the distance traveled from
the previous �xation to the current one with the changes between
the previous keypoint and each of the keypoints at the current time.

In particular, when labeling a �xationft , the velocity feature
consists of comparing the change required to transform the previous
�xation location ft � 1 to ft with the n transformations that would
move the previous keypoint label to each of the current keypoints
at those appropriate times. That is, if the �xation att � 1 had
been previously labeledi , compare this �xation velocity with the
velocity betweenki

t � 1 andk j
t for all j . Since the static error term is

added at both the previous and the current time step, computing the
velocity features by taking their di�erence cancels much of it out1.
Therefore, we can expect adding in these features to improve the

1If the static term were in fact constant and the �ltering were performed in 2D, all of
the error would be removed. However, the additional warping brought in by using
angular features (see below) means there will necessarily be some residual error.

classi�cation accuracy with larger error. The position and velocity
features are represented schematically in Fig. 2.

One approach to this problem would perform the entire calcula-
tion in 2D. That is, we could compare Euclidean distances between
pixel locations representing keypoints and gaze targets. However,
for better accuracy in the 3D environment, we choose instead to
consider rays starting at a single point (represented by the posi-
tion of the egocentric camera used for eye tracking) and projected
into the environment. These rays can be identi�ed with single
pixel locations on the egocentric video camera frame; however,
their vector representation must be preserved when calculating
di�erences and di�erences-of-di�erences, as is necessary for these
feature representations. Sec. 4.1 describes the appropriate calcula-
tions for determining these features in ray space, and Fig. 2c shows
a representation of these projection rays.

In addition, velocity features are not su�cient on their own. Note
that velocity features are reliant on thepreviouslabel being correct:
otherwise, the features are computed relative to the wrong point
and the data is useless. Moreover, the classi�cation must be seeded
with a correct initial label, for which it cannot use the velocity
features. Therefore, a complete algorithm combines both position
and velocity features to perform accurate semantic labeling.

4.1 Feature de�nitions
Mathematically, we can compute the features as follows. Represent
each �xation average pointf1 � � � fT as a unit vector indicating
the direction of gaze, and compute the average direction for each
keypoint i at each �xation timet as

ki
t = mean

� =� 0; t � � �� 1; t
ki

� ;

the average of the keypoint position over the duration of the �xation.
Both position and velocity feature can be computed from these
components.

4.1.1 Position features.For each �xationt , compute the position
featurespi as the cosine distance between the �xation location and
the position feature. That is,

pi
t = 1 � ft � ki

t

is a normalized representation of the inner product between the
unit vectors representing the average �xation and keypoint rays.

4.1.2 Velocity features.To compute velocity features, we must
�rst compute the change over time of the �xation and each key-
point. We can represent these changes asquaternions, standard
four-parameter representations of 3D rotations that are relatively
easy to compute and compare.

The �xation changed ft is calculated by computing the rotation
axis and angle, then combining them to form a quaternion. First,
the rotationaxisx̂ is computed as

x̂ = ft � 1 � ft ;

the cross product of the previous and the current gaze ray directions.
The angle� between them is then computed from their dot product,

� = arccos¹ft � 1 � ft º:
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(a) Position features. (b) Velocity features. (c) Three-dimensional representation of posi-
tion features.

Figure 2: A schematic representation of the calculated features. Colored circles represent keypoints. Filled circles represent
keypoint positions at the current time. Outlined circles represent keypoint positions at the previous time, with the solid
outlined circle representing the keypoint that was assigned as label; the other previous keypoints are dashed. The �lled red
star represents the average �xation location at the current time, and the outlined star the previous �xation location. Figure 2a
represents the position features at the current time; the closest keypoint to the �xation is the blue one, but the distance is
similar to the green distance due to a constant o�set. Figure 2b represents the velocity features; the relative motion that the
�xation would have taken between the previous time and the current time is represented by a dashed arrow for each keypoint
and the observed relative motion by the dashed red arrow. The high similarity between the blue arrow and the red arrow leads
to a small velocity feature for the blue keypoint independent of the constant o�set. Figure 2c emphasizes that while we use
simpler 2D representations for discussions, the actual feature computation is performed in 3D. Keypoints represent rays in
three dimensions originating from the participant's head, as depicted by colored vectors in the image. Position features are
computed from a vector metric related to the rotations between the �xation ray and each keypoint ray, as shown by the dashed
lines. Velocity features (not shown) are computed by comparing the rotations between pairs of vectors with each other.

Finally, the entire quaternion di�erenced ft is computed from the
axis-angle quaternion form

d ft = cos¹� •2º + sin¹� •2º
�
x1î + x2ĵ + x3k̂

�
;

where we use the coordinate decomposition of the rotation axis
x̂ = ¹x1;x2;x3º as the coe�cients of the quaternion unit vectorŝi , ĵ ,
andk̂. We compute then keypoint distances similarly, wheredki j

t
is computed fromki

t � 1 andk j
t using the same procedure.

To put everything together, assume thatft � 1 has already been
labeled as keypointi . Then the velocity features are

v i j
t = 1 � ¹ d ft � dki j

t º;

which are again normalized representations of the inner product
between the �xation and keypoint changes over time.

4.2 Classi�cation
To demonstrate the utility of these velocity features, we use a simple
one-parameter classi�er, with a weighting parameter to adjudicate
between position and velocity features. Then, the semantic label` t
for a �xation ft is assigned as the label that yields the minimum

total feature value:

` t = arg min
j =1���n

h
¹1 �  ºpj

t + v ` t � 1j
t

i
:

Here, the velocity features used are only then features derived
from the previous label, as indicated by the` t � 1 in the label. Note
that all features are inherently bounded to the range»0;2¼, where
0 indicates complete agreement and2 is complete disagreement;
therefore, no signi�cant weighting adjustments are required. While
more sophisticated classi�ers using this features can be developed,
demonstrating the power of even this simpler classi�er shows the
usefulness of the velocity features in counteracting constant o�sets.

We compare all data using three di�erent classi�ers:

Position classi�er.This benchmarking classi�er uses only the
position features above (i.e., = 0). It represents the standard
approach with no velocity features.

True position/velocity classi�er.To demonstrate the utility of
the velocity features while removing the error stackup problem
caused by relying on the previous classi�cation, we used a classi�er
where the velocity features were calculated from thetrue previous
label rather than the assigned label. Therefore, each time step was
classi�ed in isolation. By observation, we set = 0:8.
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Sequential position/velocity classi�er.This classi�er represents
how these labels would be used on a real dataset where correct labels
are not available. It is identical to thetrueposition/velocity classi�er,
except that velocity features are calculated from theassignedlabel.
Again, = 0:8.

5 SYNTHETIC DATA VALIDATION
We �rst validated this approach on synthetic gaze �xation data.
In particular, we demonstrate that adding �xation-level velocity
features indeed improves classi�cation accuracy for a signal of
this type before we add in the complication of real, noisy gaze
data. Therefore, we are not especially concerned that the gaze
dynamics (scanpath or �xation/saccade duration and dynamics)
perfectly model human gaze; rather, we simply show that in a
similar situation, the e�ect of constant error is mitigated. Using
synthetic data additionally allows us to manually control the static
error in the detection accuracy while maintaining ground-truth
labels. Therefore, we can demonstrate the usefulness of velocity
features in eliminating static error under controlled conditions.

5.1 Synthetic data generation
To build this data, we randomly generated keypoint and �xation
data that would roughly correspond to object-focused gaze behavior.
First, four keypoints were placed on an image-sized canvas. These
points were initialized uniformly randomly throughout the image
frame and at each (30 Hz) time step moved in a Gaussian random
walk throughout the frame. A simulated gaze signal was gener-
ated by concatenating �xations of randomly speci�ed lengths, with
each �xation assigned to a uniformly randomly chosen keypoint.
The �xation center was determined by averaging its corresponding
keypoint positions over the duration of the �xation. To roughly
simulate humanlike behavior, �xation durations were drawn from
a normal distribution with mean530ms and standard deviation100
ms and clipped to a minimum duration of100ms; these parameters
match published �xation means and histograms for manipulation
tasks[Hayhoe et al. 2003; Land et al. 1999]. Fixations were separated
by saccade-style spacing with durations drawn from an exponen-
tial distribution with mean100ms. Two hundred such simulated
behavior sequences were generated, each with a duration of33:3
seconds (1000 samples).

5.2 Evaluation
We applied the three classi�cation algorithms (as described in
Sec.4.2) to this generated data. To the true �xation locations, we
added a pixel o�set of constant magnitude to all the data and ran-
domly varied the o�set direction per sequence. A plot of the classi�-
cation accuracy versus induced o�set magnitude for each algorithm
appears in Fig. 3. All classi�ers perform nearly perfectly when no
error is present, as the �xation is much closer to its target keypoint
than to any of the alternative keypoints. Once the applied o�set
nears the average inter-keypoint distance, though, the applied o�set
can cause confusion for the position features, so the position classi-
�er drops in performance. However, the position/velocity classi�ers
maintain their performance for higher o�set values, indicating that
the velocity features successfully mitigate the e�ect of constant

Figure 3: Plot of classi�cation accuracy versus o�set mag-
nitude for classi�ers using position features only, position
plus true velocity features, and position plus estimated ve-
locity features (see Sec. 4.2). Adding the velocity features
makes the classi�cation signi�cantly more robust to con-
stant o�sets.

errors. Therefore, this technique is promising to pursue on a real
dataset.

6 REAL DATA APPLICATION
Our eventual goal is to employ this semantic gaze labeling system
in real-world human-robot collaborations. We aim to infer people's
intentions using their gaze �xation locations, so that a robot can
autonomously take assistive action toward their intended goal. To
determine the utility of our semantic gaze labeling approach in
this scenario, we evaluated it on a data corpus from real-world
human-robot collaborative manipulation task.

6.1 Data collection
This corpus of eye-tracking data was derived from a human partici-
pants study in which 24 people were asked to teleoperate a robot
while wearing a Pupil Labs Pupil [Pupil Labs, Inc. 2017] mobile eye
tracker. Each participant operated a robot manipulator arm using
a joystick to pick up one of three marshmallows on a plate, in a
simulation of a feeding activity (see Fig. 4). While the entire dataset
contained trails in several assistive modes, for this evaluation only
the data during full teleoperation was retained, which resulted in
�ve trials per user for a total of 120 trials. Full data collection details
are available in the accompanying paper [Newman et al. 2018].

6.2 Fixation detection
To ease data processing, we begin by dividing the entire eye gaze
signal into time periods during which the participant is looking at
the same object, which we here call�xations. Though the physio-
logical details of that term are ambiguous [Hessels et al. 2018], the
details of exactly when a �xation begins or ends is not especially
relevant to our algorithm. Furthermore, the distinction between




	Abstract
	1 Introduction
	2 Related Work
	3 Semantic Gaze Labeling
	4 Approach
	4.1 Feature definitions
	4.2 Classification

	5 Synthetic Data Validation
	5.1 Synthetic data generation
	5.2 Evaluation

	6 Real Data Application
	6.1 Data collection
	6.2 Fixation detection
	6.3 Semantic labeling
	6.4 Results

	7 Discussion and Conclusions
	Acknowledgments
	References

